TURING INSTABILITY IN A PREDATOR-PREY MODEL IN PATCHY SPACE WITH SELF AND CROSS DIFFUSION

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turing instability for a ratio-dependent predator-prey model with diffusion

Ratio-dependent predator-prey models have been increasingly favored by field ecologists where predator-prey interactions have to be taken into account the process of predation search. In this paper we study the conditions of the existence and stability properties of the equilibrium solutions in a reaction-diffusion model in which predator mortality is neither a constant nor an unbounded functio...

متن کامل

Hopf bifurcation and Turing instability in the reaction–diffusion Holling–Tanner predator–prey model

The reaction–diffusion Holling–Tanner predator–prey model with Neumann boundary condition is considered. We perform a detailed stability and Hopf bifurcation analysis and derive conditions for determining the direction of bifurcation and the stability of the bifurcating periodic solution. For partial differential equation (PDE), we consider the Turing instability of the equilibrium solutions an...

متن کامل

Cross-Diffusion-Driven Instability in a Reaction-Diffusion Harrison Predator-Prey Model

and Applied Analysis 3 If b > h, from the second equation of model (6), one has: . v ≤ v (b − h − hmv) . (9) A standard comparison argument shows that lim sup t→∞ v (t) ≤ b − h hm ≜ α. (10) If b ≤ h, we have the following differential inequality: . v ≤ −hmv2 mv + 1 , (11) and the same argument above yields lim sup t→∞ v (t) ≤ 0. (12) In either case, the second inequality of (7) holds. 2.2. Boun...

متن کامل

Spatial patterns of a predator-prey model with cross diffusion

In this paper, spatial patterns of a Holling– Tanner predator-prey model subject to cross diffusion, which means the prey species exercise a self-defense mechanism to protect themselves from the attack of the predator are investigated. By using the bifurcation theory, the conditions of Hopf and Turing bifurcation critical line in a spatial domain are obtained. A series of numerical simulations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korea Society for Industrial and Applied Mathematics

سال: 2013

ISSN: 1226-9433

DOI: 10.12941/jksiam.2013.13.129